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ABSTRACT

An asymptotic analysis is carried out for an approximate method of estimating
the parameters of the power spectrum of a zero-mean stationary Gaussian random
process from an observed realization of limited duration. Maximum likelihood esti-
mates are obtained with the approximation that the coefficients of the Fourier series
expansion of the realization are uncorrelated. This is equivalent to other approxima-
tion techniques which assume a periodic covariance function. The dispersion of the
estimates is evaluated in terms of a quantity called the differential variance. It is
shown that with this quantity as a criterion, the approximate estimates are as good,
asymptotically, as the exact maximum likelihood estimates. An approximate expres-
sion for the differential variance in terms of the power spectrum is given and it is
shown that this expression asymptotically approaches its exact value.

These results follow from a general expression, obtained by means of a con-
verse to the Schwarz inequality, which compares the differential variance of the
approximate estimates with that of the maximum likelihood estimates. This expres-
sion is evaluated for the power spectrum parameter estimation problem in terms of
the covariance matrix of the Fourier coefficients. The asymptotic behavior of these
covariances is bounded so that the convergence of the elements of the inverse covari-
ance matrix can be demonstrated. The results on the differential variance of the

approximate estimates are then established by matrix methods.
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[. INTRODUCTION

This report investigates an approximate method for estimating parameters of
the power spectrum of a zero-mean stationary Gaﬁssian random process. Applications
and previous work are discussed in references 1-4. The method is based on the ap-
proximation that the Fourier coefficients of a realization of long-time duration are un-
correlated. By a result of Root and Pitcher5 this is equivalent to the approximation
that the covariance function of the process is periodic. This latter approximation has
been used without quantitative justification by a number of previous authors. "7 The
burden of the present report is to justify the approximate method by showing that, in
a certain asymptotic sense, it provides estimates which are as good as the exact
maximum likelihood estimates. This is the first time, to the author's knowledge, that
such a quantitative evaluation of the asymptotic behavior of these techniques has
appeared. The arguments required have turned out to be somewhat involved, but this
is not surprising in view of the general difficulty of treating exactly problems con-
cerning stationary non-white Gaussian processes over a finite time interval. Only the
estimation of a single parameter has been dealt with here, but the multi-parameter
case can be handled at the cost of still further complexity. The methods can also be
applied to the estimation of the parameters of a deterministic signal in additive
Gaussian noise and to corresponding detection problems.

In Section II some general results on maximum likelihood estimates, the
Cramer-Rao lower bound and the differential variance are discussed. These are ap-
plied to power spectrum parameter estimation in Section III. Section IV describes
some practical approximations to the estimates and the differential variance. Some
results are established in Section V for the convergence of the covariances of the
Fourier coefficients and in Section VI for the inverse of the covariance matrix.
Finally, Section VII proves that the differential variance of the approximate estimates
is as small asymptotically as that of the exact maximum likelihood estimates while

Section VII establishes the validity of the approximation to the differential variance.




II. MAXIMUM LIKELIHOOD ESTIMATES AND THE DIFFERENTIAL VARIANCE

Some general results of estimation theory.10 are presented in this Section.
Consider an N-dimensional vector random variable £ with probability density f(x; a)
depending on a parameter a with true value Qe The following discussion assumes
that certain general regularity conditions on f(x;a) are fulfilled. For an observation

of £, the log likelihood of a is defined as

AME;a) = In f(E;a)

The maximum likelihood (ML) estimate g is the value of a@ which maximizes AMEsa). It
can sometimes be found explicitly as the root of the likelihood equation
= Mga) = 0 2-1
30. 2
but usually a linearization in the vicinity of a,ora method of successive approxima-
tions is required.

10 .
The Cramer-Rao lower bound ~ states that for any estimate a*

[ 1+ db/dag)?
E[N'(Ea,)]?

Var a* = (2-2)

where
— *
b En~ a,

is the bias of a*. An alternate expression for the denominator of (2-2) is obtained

from the identity

EIN'(Ga0) 12 = — EAE; ap) (2-3)

In this report a prime always denotes differentiation with respect to a and




An unbiased estimate whose variance satisfies (2-2) with the equals sign is
said to be efficient. However, efficient estimates exist only in certain cases. ML
estimates are not necessarily unbiased or efficient.

Frequently the bias of an estimate under consideration cannot be established
so the expression (2-2) is not informative. However, the Cramer-Rao lower bound
can still be interpreted in terms of the "'sensitivity'' introduced by Kelly, Lyons and
Rootl-1 They consider any statistic a* which is a measure of a in the sense that its

expectation is a monotonic function of a, and define

dEa*

dag
standard deviation of a* for a = a,

sensitivity =

The reciprocal of the sensitivity is just that small change in a, required to change the

mean value of a* by one standard deviation. It is seen that (2-2) can now be written

2
(k) = = -
sensitivity E[N'(E; o) ]2

Next consider the general class of estimates obtained by maximizing over o
some function L(E;a) which depends on £ and a (but not, of course, on ao) and has the

further property

EL'(;%_;U.O) =0 (2-5)




The dispersion of the sampling errors can be characterized by a quantity which may

be termed the differential variance.

This quantity can be further interpreted when L(E; a) is sufficiently regular so that in
the vicinity of the true parameter value q, it can be approximated by the first three

terms of the Taylor series expansion

G %)2
LEa) ~ LEa) + l@—ap) L'(Gag) + ———— L"Gay)  (2-6)
The maximum value of L(E;a) over a occurs where
L'(g;a) = 0 (2-7)

so from (2-6)

L'(8;a0)

T E ) (2-8)

* _ -
(v C10~

The distribution of the sampling error, a* — %y is approximately the same as that of
the expression (2-8). If it is also assumed that the random variations of L"'(S; ao)

are small compared with EL"'(g; a,) then L' (g; a,) can be approximated by its expected
value, the random fluctuation of L'(E; ao) about zero may be thought of as a linear

noise term displacing the peak of the parabolic approximation to L(g;a), and

Var a* ~ S(a*) (2-9)




It has been shown by Godambe12 that if S(a*) is taken as a measure of the

dispersion of the estimate a*, without necessarily referring to the particular interpre-
tation mentioned above, then under general regularity conditions S(a*) is minimized
when L(5;0) = A(§;0) and a* = a. This minimum value is, by (2-3),
)
E[N(Eap)] 1 -1
=) (2-10)

[I*Z/\"(_é_;ono)l2 i E[A'(E;ao)]Z - EN'(ay)

S(a) =

This is the same as the quantity appearing in the Cramer -Rao lower bound (2-2), but
the present result holds with the equals sign for any regular estimate, biased or not.

We now determine an upper bound for S(a*) in terms of the difference between

AME;a) and L(E;a). By (2-5)*

J L") fxs ) dx = 0 (2-11)
The differentiation of (2-11) under the integral sign with respect to a gives
JL"(5a) fsag) dx = = [ L'(sag) (s 0 ) dx
[ (2-12)

1]
|
=
-
—_~
(B
.o
~—
-
—_
-
~
-

There is a modification of the Schwarz inequalityj‘3 which states that for any

non-negative ¢(z) and for integrable u2(z) ¥(z) and v2(z) w(z)

n . 2 C'
[f u(z) v(z) ¥(z) dz ]2 = 1= = [}(z)z(z;(;()zl) d;(Z) &z fuz(z) wz) dzj\ v2(z) W(z) dz

(2-13)

* Unless otherwise noted, all integrals are N-fold definite integrals, each component

of x ranging over (—=, @).




Let us assume the required conditions are satisfied so that (2-13) can be applied
to the right-hand side of (2-12) giving

f' (x; o) ;
[fL'(ﬁ;%) @;‘5— f(i;%) dilz

JREAET o) — £ (5 00)/f(x; 0) ] 2 f(x;a ) dx

> < l_ ~

,Jr‘ [L'(gi:ao)]2 f(x; @) dx

| L (x5 00) 2
-~ [L'(i;ato)]2 f(x;a ) dx | ‘:f(g—;:zi—_ f(x;a ) dx . (2-14)
Noting that
f'(x; ap)
- = AN(x;0)
f(x;a ) a=o

and substituting (2-12) into (2-14) we can rearrange the result as

i

J L' (x5 0) ) f(x;a,) dx ] L'x; a = N(x;a,) % f(x; ) dg[l

B e =l1- -
[J L (x5 ap) f(x;a ) dx] l J L a)]” fxia) dx l

(2-15)

The left-hand side of (2-15) is just S(a*)/S(a). The right-hand side consists of a quantity
a- ;)-1 = 1. If  can be shown to converge to zero, then it is established that S(a*)
converges to its minimum value S(a). This is a tractable criterion for establishing the
asymptotic behavior of a general class of estimates and is applied in Section VII to the

approximate ML power spectrum parameter estimates.




III. MAXIMUM LIKELIHOOD ESTIMATES FOR POWER SPECTRUM PARAMETERS

The analysis is based on the following assumptions:

a) The random process is stationary, Gaussian, and zero-mean with a double -
sided power spectrum P(f;a) which is a known function of the parameter a whose value
is to be estimated. (If the process consists of a random signal plus an independent
noise, then P(f;a) is the sum of the two individual spectra.)

b) A particular realization x(t) of the process is observed for 0 =t = T.

c) The true value of a is denoted by o and the actual power spectrum is

2(f) = P(f;ao). a, is assumed to lie within a known finite interval

(d) For any a within this interval, only values of P(f;a) within some fixed finite

range

o<f <|ff<f, <

depend on a. Since fl and f, may be anywhere outside of the range of dependence for

2
convenience, we take

f, = NJ/T f, = N/T

where Nl and N_ are integers. (This assumption means that P(f; a) has some constant

2

shape outside of fl < |f| < f2. The assumption f2 < = allows a finite -dimensional formu-

lation of the problem and is meaningful in the usual practical situation where frequencies

above some finite limit are not observable. The assumption fl > 0 is only for the con-

venience of eliminating zero frequency which enters unsymmetrically into the formulation. )
e) P(f;a) obeys certain regularity conditions which will be detailed in Section V.
The Karhunen-Loeve expansion which is frequently employed in the analysis of

random processes is not well adapted to spectral parameter estimation problems

since it is in terms of an uncorrelated set of eigenfunctions which, except in the




simplest cases, change in a complicated way as the parameters vary. Instead, the

likelihood function is here expressed in terms of the Fourier coefficients

1 T
y. = = [ x(t) exp[—i2rnf t] dt (3-1)
n N/T 6 0
where
fo = 1/T

The coefficients for Nl = pe N2 are taken as the "'observable c:oord'mates"]3 of the
process. This is plausible since under general conditions, for almost every realiza-
tion, x(t) can be represented by the limit-in-the-mean of its Fourier series expansions.
This choice of the observable coordinates could be further justified but that will not be
attempted here.

The real and imaginary parts of Y, each have a Gaussian distribution with zero-
mean and the entire set of

N = N2—Nl+l = (fz—fl)T+l = f2T (3-2)

coefficients has an N-variate complex Gaussian distribution. It can be shown  that

sin2 mfT
—n/T) (f —m/T)

— l n
S Eyn Yoy gl df &(f) @

(3-3)

where :;m is the complex conjugate of Yo' (3-3) is equivalent to a result in Reference
5 except for a correction of a factor of two. The boundedness of 3(f) assures that the
T m exist and the normalization in (3-1) is chosen so that E|yn|2 has a finite limit as
T = =,

With R as the matrix having elements rp,, and y as the vector with elements

Yy» the log likelihood of the parameter a is




My;a) = = {ln N +yT R y} (3-4)

which is maximized over a to determine a. It is shown in Appendix A that R is non-

singular if
$(f) > 0 for all f

Next, let D be the matrix with elements

2
3 1 sin” nf T
- — = —-— r g ) ‘gl

d bg Sum 27 df P'(f; o) €—n/T) G —m/T) (3-5)
and assume all dnm exist. Using matrix relations given by Bodewig15 we have

ai mR| = R ' D (3-6)

= a2 e

d -1 -1 -1

g} =R DR 3-7)
and thus

NMye) = —{o _R'1 D - XTB'I DRy} (3-8)

(In certain cases an exact expression for &can be found by using (3-8) in (2-1).) The

fourth product moment for complex Gaussian variates™  is
TaTi1 .0 o
E¢Ay)(y By) =trARwuwrBR+r ARBR (3-9)

and therefore

E(A(so)l? = wRY D R D (3-10)

which provides the Cramer-Rao lower bound and the value of S(&).




IV. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FOR POWER SPECTRUM
PARAMETERS

Unfortunately, the exact expression (3-4) for A(y;a) is too complicated to permit

calculations in most cases. However, it is easily seen that

¢(nf,) n=m
lim T | (4-1)
T-o | 0 n#m

A great simplification occurs if the approximation is made that for large T

’ ’b(nfo) n=m
= (4-2)

o l 0 n#m

Then R becomes diagonal and we take
N
A L Y In 7 P(nf ;o) + ol 1 4-3
‘-(lv a) =~ (lv f'L) - Zy nm (n o’ a) P(nf ;a) ( )
n=Nl — o =

Thus the likelihood is approximated in terms of the elements of the periodogram |an2.
a* will henceforth denote the approximate ML estimates obtained by maximizing
L(y; n).

If P(f;) is a slowly varying function, then the summation (4-3) can be approxi-
mated by an integral. The individual Ivn|2 need not be measured since their values can
be smoothed and replaced in this integral by a continuous function $*(f) which is equi-
valent to an approximately unbiased overall spectral estimate such as given by the
Blackman-Tukey method 17 or by a power spectrum analyzer. For the integral to be a
good approximation all the !vn|2 must be effectively included and the resolution must
be sufficient so that the detailed structure of the spectrum is not obscured. With (4-2),
|\(n|2 is replaced by 3*(nf,) in (4-3) and

f

. ol : B .
Liyia) ~ =T [ df [log TR(E;a)+ e s ] (4-4)
£ ’
10




where the integral is multiplied by T, the reciprocal of the spacing of the terms in the
summation.

It is now readily seen that

(4-5)

2 o
e = 5 [Plafgs) _ vl P(nfo:a)]
L(y; ) ;/ [:P(nfo;a) p2 (nfo;d)

and that

EL'(ya) = 0 (4-6)

which satisfies (2-5). A second differentiation and the substitution of (4-2) give

P! (nfy; ap) ]2 f TP (fa0)
- "y = VY| —2ro ! 7Tt -
EL"(v;ay) = ; [P(nfo;ao)] ~ T | df [: P, ay) (4-7)

f)

With the discussion in Appendix B and (3-2), it can readily be established that

E L""(y;a,) is of the order of T while the absolute value of the error in approximating

the sum by the integral is bounded by a constant. By some further calculations of this

sort the approximation introduced just before (2-9) can also be justified for this case.
We will take — E L"'(y; o.o) as a convenient approximation to— E A''(y; qo), the

quantity entering into (2-2) and (2-10). It should be noted that
E L'( . ) 2 ¢ . E Lv' o ry )

because the Y, are not, in general, uncorrelated.

11




V. CONVERGENCE OF THE COVARIANCES OF THE FOURIER COEFFICIENTS
For our purposes it is necessary to show that for some T > 0 and T> T the
covariances rp, converge uniformly and with sufficient rapidity to their asymptotic
values for all n, m satisfying
Tf;=n= Tf2

(5-1)
Tfl =m = Tf2

This can be established with the assumptions on P(f; a) given in Section III plus the one

below.
(e) For all f and all a withina_ . <a<a P
min max S
Qn]a\:’ Pmax’ QmaX, Pmll‘l SUCh that
. <
P(f;a) = Pmax
OP(f; o) |
of n Qmax
JP(f; o) .
Fha) < p
da max
32 | '
St oe DW= oy

P(f;a) = P_. > 0

and all indicated derivatives exist and are continuous.

The variances r . are considered first. From (3-3)

© 2
r =§— T dr &(f) ﬂ"—~£§—
nn T e — o (f—n/T)
I in% T
n sin ™
= —— [dra@+n/T) 22
2T _ G p
1 . sin> nfT
= —— [ df BE/T)+3(¢ +n/T) - 3@/T)) T5— (5-2)
2T _°, f

12




Since

; j. df sin ;TfT -1 (5-3)
T<H — f
then
r — %@n/T) = eRn
2f = 2f o) [
2 2 . in2
- —ﬂ;— o+ [+ | { df (8¢ +0/T) - 3(a/T)) S—“‘foIj
T (-9 .
21, 21, ) |
(5-4)
By the mean value theorem for the derivative
8¢t + n/T) —8(0/T)| = [f| Q. (5-5)
SO
2f 2 — 2t ©
22 ) .
T -2, - 2f (
2
2
Jdf P w( ] (5-6)
) max £ J
\
With the substitution
u = mfT
(5-6) becomes
2ﬂTf2 sin®u
le Q du
max . |u|
2n’I‘f
N 1
+ 2P [t —2}
2f2 f (Con't.)

13




— 2N o
1 ) [ o sin u 8 an2 du } Pmax
= — Qi | ) du T+ ol B
m“T L 0 u - u / 2
1 r ’ P =
= 5= | Qpay (THI2TH) “f’—a" J (5-7)
W — 2

which is of the order of (In T)/T.

Next, for m #n,

@ 2
1 i m
r = —— [ dts+am) SHIL
T —» _
f(f T )
® .2
1 o sin® mfT
= 2—"[‘ 'J' df [#(f+n/T) — 3(n/T)] e (5-8)
— f(f — T )
since
< sin?mfT
J df o =N 0 for m # n (5-9)
—® f(f — )
o
Proceeding as before, we have
- 2f, —2f ® 2
i id 2 e P
r= = L TP+ [+ [ L dfja+n/T) - 3u/T)) b—“‘—mf—"‘;—,:{
T L (-2, —o 2, | (i~ =)
1 2 <t
= - r‘f arq, ST Pl [ o+ [ o —— 2)]
L SR od - — — f+f Y -
26, |t - = | (E+£)7 21, (1))
_ 1 (Q ¥z df sin® Tf T N 2Pmax]
m2T | “max —‘3f2 lf’ f2
2P
1 : max
= 27 _2Qmax (m+In 3Tt2) + i, ] (5-10)

14




Thus, by (5-7) and (5-10), for T larger than any specified To' we can write

InT
R T

-6 ?(m/T)| = K (5-11)

where énm is the Kronecker delta and KR is a finite constant which depends on "[‘0 but
is independent of T, a, nand m. This rate of convergence is sufficiently rapid to
allow proof of the final results.

It is also necessary to establish the asymptotic behavior of

d = R r
nm da nm
"1=d0
1 N sin2 nfT
= [ df P'(f;
2 o PO Ty - m/m)

First consider

o 2

L ¢ ‘()T : ‘0 ) — P'(a/T sin” 7fT

dnn = 3; _"; df [P'(n/T; do)"' P(f'i"n/T,(IO) P'(n/T; ‘10)] (2
= P@/Tiaq) + €5 (5-12)
Then

2[; —2f; =) | 2 )

€] = ; LT+ [Ty dPE+/Tia ) - P @/Tie,)! S"‘%fl )

"OmT <21, —= oo, | f )
(5-13)

By the assumptions on P'(f; o) and the mean value theorem for the derivative,

P +0/Tia ) —P@/Tia )| = |f| Qpax (5-14)




so a development analogous to that given previously shows

2P’
~ < 1 ¢ ' - - mai 5-
| Dn‘ = o [ZQ . (m+1n 2Tf,) f2 ] (5-15)

An analogous development also holds for m # n, so for T > TO

InT
D T

| — A H . <z <
d mp(n/T,zo)( < K

(5-16)
nm n

where KD is a finite constant independent of T, a, n and m.

16




V1. CONVERGENCE OF THE INVERSE OF THE COVARIANCE MATRIX OF THE
FOURIER COEFFICIENTS

Let )\min@) be the smallest eigenvalue of R and let (B);:n be the (n, m) element
of B- . It has been shown C]SC\VhCr('lS that
L oowh = ! (6-1)
"nn e y' 2
“an ~ (ir’l rin)/)\ml ®)

.t

where :J indicates that the term in the summation corresponding to i = n is omitted.

In Section V it was established that for T > To

InT
=< i # -
lrm| = Kp —% i#n (6-2)
so with (3-2)
N, 2
™ 2 2 (InT) )
L Tip | = kg T L
i=1
By Appendix A
min(B) - Pmin s -5)
so
1 o )Yy = ! . (6-4)
ot — nn rpn — C (In T)4/T
where
2
f. K
C = 13 R S0 (6-5)
min

17




Thus, with (5-11), for T> To

1 -1 1
= (R ) = — “"‘——“—“—*—_‘2‘—'
- , InT — ‘nn - InT  (InT) B
#(n/T) + K —= n/T)—Kp —7— = C (6-6)
For any ©> 0 and |€| = /2
1 € 1 1 2|€]
5 % gve Sut g
\.?-
and therefore
K 2
1 "R InT _ -1 _ 1 2 [, InT (1nT)_l
3/T)  p2. T R\ " Fwm T 32 \}R T T |
min min
(6-7)
18
It can also be shown that
N
=1 1 3‘\' 2 )
Rl =3 (R) [lrnml+(.jl )/ A ®)] (6-8)
min — -
With (A-3), (6-2) and (6-3), it follows that
I®Y | = =2— [K, In T/T+C (n T)*/T] (6-9)
- nm P2 R
min
Combining this with (6-7) gives for T> T,
Kpln T 2
S _ 2 " R C (In T)
I(B )nm Snm @(n/T)| ©p2 | T + T ]
min
- ¢ (nD? )
= Cp =7 (6- 10)

18




where (‘R is a finite constant which depends upon 'I" but not upon T, n, n, or m. Thus
)

W2
as T becomes large, the off-diagonal elements of R ! converge to zero as (Iln T)</T.

19




VII. ASYMPTOTIC BEHAVIOR OF THE APPROXIMATE ESTIMATES

It will now be established that

lim —=% = | (7-1)

so that under the criterion of smallness of the differential variance o* is asymptotically

as good as a. This is accomplished by showing that

lim £ = 0 (7-2)
T

where

[ L xa) — Mg’ fx o) dx

J 1L(xa) (s 0) dx

f
“num

C
“den

appears in (2-15).

By (4-7) and Appendix B, :den is of the order of T. The development which
follows is devoted to establishing that ;num is of the order of (In T)4 so that asymp-
totically C is of the order of (In T)4/T and therefore satisfies (7-2).

Let & be the diagonal matrix whose diagonal elements are R, = P(n/T;a,) and
whose off-diagonal elements are zero. Let A have diagonal elements Ann =P'(n/T; ao)

and off-diagonal elements zero. From (3-8), (4-5) and (3-9)

. -l 1. T -1 -1—-, T -] -1- 2
Coum - EltrR "D-wrfR™4 -y R"DR"y+y R°4A R "y]
- e@lip-eta)’ - 2w @®'D-ata) w®D-2'ag'R).
+r®@'D-glag R + 20 ® D -r 7t A RTIRY

Con't.

20




:“r@déﬁdﬁ“idéﬂz+tr@d9—gdé£d
“ “num1 T Snum?2
By (5-11)
[y P@/T;a0) ¢
mum 1 = | L "3“*—LEQ‘ (tpy — P(/Tiay))
I n P(n/T:on.O)
T B . 2
B f2 max R T
P2
L min
;num 9 is bounded by observing that for any square matrix A
= T 1 .2
A =®mEA = / ®nm
nm
So if
b | =l|a_| for all n,m
nm nm
then

2
tr A7 = ) b2

- = nm
n, m

Thus we can write, by (5-11), (5-16) and (5-10),

-~

“num 2

-1
w @) @y,

-1
trf Y, tu, Aty

2

= o (8 n,+n,

) — R

+
2 41,7

= 2
fagt@+yy

—etaaty

1 By 2 by

n, +R7 AR n’

21

R)

2

(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)




+
where A has elements which are the absolute values of those of A, all elements of 1

2 L’
are equal to CR fa TP , all elements of n, are equal to KD lnTT and all elements
of N, are equal to K Bl
T3 are e R T
Then
K. InT 2 P’ K. InT !
) 2| n" , (n T) .. T  ‘max R "
coum 2 = T | 5—F + P Cp + C Ky =5+ :
num 2 2 PminT max T R T P2 T
L min i
(7-9)

s , 4 R .
From (7-4) and (7-9), Cum 1S of the order of (In T) for T > T,- Since Cden 18 of the

order of T, we conclude that  is of the order of (lnrl:l")

or less which establishes
(7-2) and hence the desired result.




VIII. CONVERGENCE OF THE APPROXIMATION TO THE DIFFERENTIAL VARIANCE

It has been shown (3-10) that

1 1

S(@ = {r R DR 9}'1 (8-1)

A convenient approximation (4-7) for S(&) is

it L o T P@/Tiag) 241
{ EL(X:GO)} -{—‘W }

1

= {welartar’! (8-2)

It was shown that for T > To this latter expression is of the order of 1/T. It will now

be established that as T = « this expression approaches S(a) and in fact

LA & -1
-E Jg(&()x,ao)} . (8-3)

lim
T—occ

With the notation introduced in Section VII, (3-10) and (4-7)

-1
—E A" (1500) tr R I_))2
—-EL (13‘10) - @-lé)z
adl 2
tr (@ +up @+ )]
- Sl (8-4)
tr @ " A)
SO
" -1 2
- E 1" (y;a)) tr ® 32+f_lé+nlg_2)
- 1] = T 3 (8-5)
B L' (vie,) tr @ 4)

By the same type of argument employed in the previous Section it can be shown that the

right hand side of (8-5) is of the order of (In 'T')4/T so that (8-3) is established and there-
X i | g o

fore the validity of the approximation of S(@) by {-EL (x;ao)} is confirmed.
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APPENDIX A. EXTREME EIGENVALUES OF THE COVARIANCE MATRIX OF THE

FOURIER COEFFICIENTS

For any vector x,

| ( x TR X
R) = max =85S
max — . XTZ‘
Now
W2 L 2npr
T b)Y - sin” T
x Rx = X X —= df 2(f) —
n,m:N1 nm n2p (f—n/T) (f —m/T)
N P VA
- L1 oars (\,\ _sinfT
W.Z'I‘ _Lx _I_]‘ n (f"'ﬂ/T)
Since the integrand of (A-2) is non-negative
5 P ed - o -2
1 max p ‘ |« sin f”I—,
Xx R x = , df X —_—
C Pmax v 0 sin” 7T
: - > x ] - 1 =
neT Ao nom °_ (f —n/T) (f—m/T)
< p AW XZ
max ~ n
n
and
Lmax(}—{) : Pmax
Similarly,
3 >
'min@) Pmm

Hence, if Pn in >0, R is positive definite.
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(A-1)

(A-2)

(A-3)

(A-4)

(A-5)




APPENDIX B. THE APPROXIMATION

OF SUMS BY INTEGRALS

Assume that u(x) and g—g-i—x—)- are continuous (and therefore bounded) for
<a X = b<= and that
b
== u(x) dx
exists. Then
N-1
1= ) 1
~n
n:
where
a+(n+1)A
In ol u(x) dx
a+nA
and
NA = (b—a)

By the mean value theorem for the derivative

[u(x) — u@ma)| = Aw

where
U‘max - m;x dg—i:)()
By the first law of the mean
I = Au )

for some £, such that

fornA = x = (n+ 1A

fora=x=b
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(B-1)

(B-2)

(B-3)




a+nA<I<a+(+ DA
II('n\ [

:Ij — Au@A)| - max A Ju(x) —uma)
' a+nd=x=<a+(@+ DA

(]

‘max
by (B-2). Therefore
N-1
I—A Y umd) = a“w = A —a)u' (B-6)
- max max
n=0
and the difference between the inteeral and the finite approximating sum is of the order
of A. On t} yther hand
N-1 b i
X 1 » | .
i u(nA) (xYdx ] = b—a) u (B-7)
: AY max

n=u a

The right-hand side of (B-7) is a constant independent of N.  Since

| N
A (b —a)

the left-131nd side of (B-7) is of the order of N for N N, > 0.

(B-4)




10.

11.

12,

13.

REFERENCES

Levin, M. J., ""Power Spectrum Parameter Estimation,' IEEE Trans. on
Information Theory, IT-11; January 1964.

Schweppe, F. C., ''Evaluation of Likelihood Functions for Gaussian Signals,"’
IEEE Trans. on Information Theory, IT-11; January 1964.

Hofstetter, E. M., "'Some Results on the Stochastic Signal Parameter Estima-
tion Problem," ICMCI Conference, Tokyo, Japan; September, 1964.

Sakrison, D. J., '""Efficient Recursive Estimation of the Parameters of a Co-
variance Function,'' Internal Technical Memorandum M-76, Electronics
Research Laboratory, University of California, Berkeley; July, 1964.

Root, W. L. and T. S. Pitcher, ''On the Fourier Series Expansion of Random
Functions,'' Annals Math. Stat., 26; June, 1955 (313-318).

Whittle, P., Hypothesis Testing in Time Series Analysis (Almqvist and Wiksells,
Uppsala; 1951).

Whittle, P., Appendix in A Study in the Analysis of Stationary Time Series, by
H. Wold, 2nd edition (Stockholm; 1953).

Whittle, P., '"Estimation and Information in Stationary Time Series,'' Ark, Mat.,

2; 1953 (423-434).

Good, 1. J., ""Weighted Covariance for Detecting the Direction of a Gaussian
Source,’’ Proc. of Symposium on Time Series Analysis, Brown University,
June 11-14, 1962, edited by M. Rosenblatt (John Wiley and Sons, 1963) (447-
470).

Cramer, H., Mathematical Methods of Statistics (Princeton University Press;
1951).

Kelly, E. J., D. H. Lyons and W. L. Root, ""The Sensitivity of Radiometric
Measurements,'" J. of the S.1. A. M., 11; June 1963 (235-257).

Godambe, V. P., '""An Optimum Property of Regular Maximum Likelihood Esti-
mation,"'" Annals of Math. Stat., 31; December, 1960 (1208-1211).

Levin, M. J., ""On the Schwarz Inequality,'’ Correspondence Section, Proc.
IEEE, 53; January 1965 (107-108).

27




14.

16.

17.

18.

Grenander, U., '"'Stochastic Processe~ and Statistical Inference,'' Ark. Mat. ,
1; 1950 (195-277).

Bodewig, E., Matrix Calculus (Interscience Publishers, New York; 1956).

Bello, P., ""Some Results on the Problem of Discriminating Between Two
Gaussian Processes,'' IRE Trans. on Information Theory, IT-7; October, 1961
(224-233).

Blackman, R. B. and J. W. Tukey, The Measurement of Power Spectra from the

Pcint of Vlew of Communications lingineering, , (Dover Publications, New York;
1959).

Levin, M. ]J., ""Bounds on the Inverse of a Positive Definite Symmetric Matrix,"’
Group Report 1964-67, Lincoln Laboratory, M.I. T. ; November 1964.




DOCUMENT CONTROL DATA - DD 1473

. ORIGINATING ACTIVITY 2a, REPORT CLASSIFICATION

Ilnclassified

Lincoln Laboratory, M.I.T. Sl LLaLL g

. REPORT TITLE

A Method for Power Spectrum Parameter Estimation

. TYPE OF REPORT AND INCLUSIVE DATES

Group Report

. AUTHORIS] (Last name first)

Levin, M. Joseph

6. REPORT DATE 7a. NO. OF PAGES 7b. NO. OF REFS.
10 February 1965 3L 18

8a. CONTRACT NO. 9a. ORIGINATOR'S REPORT NO.
AF 19(628)-500 Group Report 1965-8

8b. ORDER NO. 9b. OTHER REPORT NOIS).
ARPA Order 512 ESD-TDR-65-48

AVAILABILITY OR LIMITATION NOTICES

. SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY

Advanced Research Projects Agency

. ABSTRACT

An asymptotic analysis is carried out for an approximate method of estimating the
parameters of the power spectrum of a zero-mean stationary Gaussian random process
from an observed realization of limited duration. Maximum likelihood estimates are
obtained with the approximation that the coefficients of the Fourier series expan-
sion of the realization are uncorrelated. The dispersion of estimates is evaluated
in terms of a differential variance. With this quantity, the approximation estimates
are shown to be as good asymptotically as the exact maximum likelihood estimates.

An approximate expression for the differential variance in terms of the power spec-
trum is given, which is shown to asymptotically approach its exact value.

These results follow from a general expression obtained in terms of a converse to
the Schwarz inequality, which compares the differential variances of the approximate
estimates and the maximum likelihood estimates.This expression is evaluated for the
power spectrum parameter estimation problem in terms of the covariance matrix of the
Fourier coefficients. The asymptotic behavior of these covariances is bounded to
demonstrate the convergence of the inverse covariance matrix elements. The results
on the differential variance of approximate estimates are established by matrix

methods.

14,

KEY WORDS

power spectra

Gaussian processes

29













